Mathematical Analysis - List 12

1. If f is a continuous function such that $\int_{0}^{x} f(t) d t=x e^{2 x}-\int_{0}^{x} e^{-t} f(t) d t$ for all x, find an explicit formula for $f(x)$.
2. Evaluate $\lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{x}(1-\operatorname{tg} 2 t)^{1 / t} d t$.
3. Suppose that the graph of a differentiable function f passes through the origin and the point $(1,1)$. Find the value of the integral $\int_{0}^{1} f^{\prime}(x) d x$.
4. If f^{\prime} is continuous on $[a, b]$, show that $2 \int_{a}^{b} f(x) f^{\prime}(x) d x=[f(b)]^{2}-[f(a)]^{2}$.
5. Let $f^{\prime \prime}$ and $g^{\prime \prime}$ be continuous and $f(0)=g(0)=0$. Show that

$$
\int_{0}^{a} f(x) g^{\prime \prime}(x) d x=f(a) g^{\prime}(a)-f^{\prime}(a) g(a)+\int_{0}^{a} f^{\prime \prime}(x) g(x) d x
$$

6. Sketch the region enclosed by the given curves. Decide whether to integrate with respect to x or y and find the area of the region.
a) $y=1 / x, \quad y=1 / x^{2}, \quad x=1, \quad x=2$;
b) $y=x^{2}, \quad y^{2}=x$;
c) $y=e^{x}, \quad y=e^{3 x}, \quad x=1$;
d) $y=x^{4}-x^{2}, \quad y=1-x^{2}$;
e) $x=1-y^{2}, \quad x=y^{2}-1$;
f) $x+y^{2}=2, \quad x+y=0$.
7. Sketch the region that lies between the curves $y=\cos x$ and $y=\sin 2 x$ and between $x=0$ and $x=\pi / 2$. Notice that the region consists of two separate parts. Find the area of this region.
8. Find the area of the region bounded by the parabola $y=x^{2}$, the tangent line to this parabola at $(1,1)$, and the x-axis.
9. Find the volume of the described solid S :
a) The base of S is a circular disk with radius r. Parallel cross-sections perpendicular to the base are squares.
b) The base of S is the region $\left\{(x, y): x^{2} \leqslant y \leqslant 1\right\}$. Cross-sections perpendicular to the y-axis are equilateral triangles.
10. Find the volume of the solid obtained by rotating the region bounded by the curves about the specified axis.
a) $y=e^{x}, y=0, x=0, x=1$, about the x-axis;
b) $y=x^{2}, y^{2}=x$, about the x-axis;
c) $y=e^{x}, y=1, x=1$, about the y-axis;
d) $y=x^{4}, y=1$; about $y=2$.
